Modern-Like Tectonic Plate Motion On The Early Earth Your local news,India,For you,Headlines,Life Style,Society,Cities,States,National,International,Politics,FOOTBALL, auto,tech,Travel,Health and Fitness,Food,Stocks,Opinion,Budget, education, specifications,arts, automotive, design, events, Festival,Fashion Style,Local,Mens Lifestyle,Children,Photography,Womans Lifestyle,HOME GARDEN,RECIPES, goodnews,CITY NEWS,ipl,worldcup,TENNIS,BADMINTON,HOCKEY,RACING,SHOOTING,VOLLEYBALL,CHESS,WWE,BOXING,GOLF,SNOOKER,BILLIARDS,CYCLING,WRESTLING,NFL,AUTO, Happy Birthday,Horoscope, coming soon, attitude quotes, application, motivation, animals lover, Canada news, Switzerland news, Newziland news,uk news, Australia news,World, health,Sports,Technology,Science, business,Entertainment, football, cricket, Skip to main content
Home TOP_NEWS World Sports Technology Science Business Entertainment Football Cricket India Headline Local News International National States Travel Fitness Food Festival Quotes Image Video Shoping Leptops Mobile Sayari Budget Opinion Popular people Trending Top gadget Education Specifications Arts Automotive Design Events Festival Fashion and Style Local news Mans Lifestyle Children Photography Womans Lifestyle Home and Garden Recipes Good News City News Ipl Worldcup Tennis Badminton Hockey Shooting Volleyball Chess WWE Boxing Golf SNOOKER and BILLIARDS Cycling Wrestling NFL Auto Happy Birthday Horoscope Coming Soon Attitude quotes Application Motivation Canada News Switzerland News Newziland News Uk News Australia News Other News Seo Tips YouTube Stories Live News Insurance Tv Femas/Popular Bike Car Farmers Companies Global News World Business For you

Modern-Like Tectonic Plate Motion On The Early Earth

Earth

Modern-Like Tectonic Plate Motion On The Early Earth

Plate tectonics is key to the evolution of life and the development of the planet. Today, the Earth’s outer shell consists of about 15 shifting blocks of crust. On them sit the planet’s continents and oceans. As Earth formed, the plates drifted into each other and apart, exposing new rocks to the atmosphere, which led to chemical reactions that stabilized Earth’s surface temperature over billions of years. A stable climate is crucial to the evolution of life, and the study suggests that early forms of life came about in a more moderate environment.

“We’re trying to understand the geophysical principles that drive the Earth,” said Roger Fu, one of the paper’s lead authors and an assistant professor of Earth and planetary sciences in the Faculty of Arts and Sciences. “Plate tectonics cycles elements that are necessary for life into the Earth and out of it.”

Plate tectonics helps planetary scientists understand worlds beyond this one, too.

“Currently, Earth is the only known planetary body that has robustly established plate tectonics of any kind,” said Brenner, a third-year graduate student in the Graduate School of Arts and Sciences. “It really behooves us as we search for planets in other solar systems to understand the whole set of processes that led to plate tectonics on Earth and what driving forces transpired to initiate it. That hopefully would give us a sense of how easy it is for plate tectonics to happen on other worlds, especially given all the linkages between plate tectonics, the evolution of life, and the stabilization of climate.”

For the study, members of the project traveled to the Pilbara Craton. A craton is a primordial, thick, and very stable piece of crust. They are usually found in the middle of tectonic plates and are the ancient hearts of the Earth’s continents, which makes them the natural place to go to study the early Earth. The Pilbara Craton stretches about 300 miles across, covering approximately the same area as the state of Pennsylvania.

Fu and Brenner drilled into rocks from a portion called the Honeyeater Basalt and collected core samples about an inch wide in 2017. They brought them back to Fu’s lab in Cambridge and placed them into magnetometers and demagnetizing equipment. Certain minerals in rocks lock in the direction and intensity of the Earth’s magnetic field at the time they are formed. That field shifts over time, so by examining layers, scientists glean evidence for a kind of timeline of when rocks were formed and when they shifted in the plates. These instruments told them the rock’s magnetic history — the most stable bit being when the rock formed, which was 3.2 billion years ago.
😊 Thanks for Visit.😊